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ABSTRACT

In this paper, we formulate a four step computational algorithm to solve nonlinear Burger’s
equation with source terms whose occur in aerodynamics engineering which play a major roles in
convection and diffusion whose present in viscous fluid flow engineering problems. Numerical
assessment was carried out to study effect of source term A¢@ which represents the heat released
in the boundary layer. Increase the source A term and decrease in v kinematic viscosity which play
a major roles in obtaing velocity ¢ (x, t). Eventually, we subject the nonlinear Burger’s equation
with source terms to initial and boundary conditions available in the literature. The results
revealed that the new algorithm is capable and realiable to solve similar nonlinear partial
differential equations occur in applied physics and engineering.

Keywords: A four step algorithm, Nonlinear Burger’s equation, Source terms, Aerodynamics
theory, Viscous fluid flow.

INTRODUCTION
In this paper, we consider nonlinear Burgers’ equation with source terms in aerodynamics
engineering of the form (Mayur et al., 2018):

d
—+tp—=v—x— ¢ x,v,A>0 1)

with initial and boundary conditions given (Chandrasekharan Nair, & Awasthi, 2019).
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! & @
lq)(xo,t):to 1<t<T
p(1,t) =t 1<t<T

Where ¢(x,t) is the dependent variable which x is space coordinate and t is time, A¢@ represents
source terms which plays a role of releases heat in the boundary layer, v is kinematic viscosity and
Co IS a constant.

Burgers’ equation was proposed by Johannes Martinus Burgers (1895-1981), a Dutch
physicist, and become one of the leading equations in the field of fluid mechanics which explained
details in theory of fluid flow dynamics of traffic and turbulence shock waves. Its contributed a
great significance in the diversified physical problems related to engineering and applied sciences.
Burgers’ equation is one of the famous non-linear partial differential equations which is suitable
for the analysis of various important areas in applied mathematics and engineering physics.
(Burgers, 1939, Nieuwstadt & Steketee, 2012, Abdou & Soliman, 2005, Burgers, 1948,
Panayotounakos & Drikakis, 1995).

In recent years, several reseaachers have developed a significant computational techniques
for solving linear and non-linear PDEs found in many physical phenomena in applied mathematics.
Burgers’ equation is one of the most partial equations describes non-linear propagation and
diffusive effects which occurs and represents various physical problems arising in applied sciences

e e : . : a ]
which is difficult to solve analytically. The presence of non-linear convective term ¢ ﬁ and v %x

feature in Burgers’ equation (1) describe a situation when v approaches zero, it become inviscid
Burgers’ equation of a model of wave propagation. Moreover, as ¢ tends to zero, equation (1)
becomes the heat equation which describe unsteady heat equation without internal heat generation
arises in the mathematical modelling of many physical phenomena occurring in nature. Ismail et
al. (2004) applied adomian decomposition method to obtain numerical solutions of Burger’s
equation, homotopy perturbation method was employed to solve coupled Burger’s equations by
(Desai & Pradhan, 2012), authors (Abdou & Soliman, 2005) presented and applied variational
iteration method for solving Burger’s and coupled Burger’s equations and (Mittal & Jain, 2021)
proposed modified cubic B-splines over finite elements as a method for solving Burgers’ equation
and (Chandrasekharan & Awasthi, 2019) presented and applied quintic trigonometric spline based
numerical scheme for nonlinear modified Burgers’ equation and just to mention a few.

The objective of this paper is to modified the algorithm presented by (Falade & Tiamiyu,
2020) and to investigate behavior of parameters (A@ represents source terms and v kinematic
viscosity) on Burgers’ equation (1) which explains the role of diffusion and convection when a
non-autonomous reaction term produces heat constantly in a viscous flow (Mohamed, 2019) ,
furthermore, we present 3D plots, 2D plots and densityplots for the heat distrubution profiles of
Burgers’ equation.

NEW FOUR STEPS ALGORITHM (NFSA)

In this section, we present a four steps algorithm using MAPLE18 codes software package to solve
equation (1) with initial conditions (2) as follows:

54



https://www.acseusa.org/journal/index.php/aijser ~ American International Journal of Sciences and Engineering Research  Vol. 4, No. 1; 2021

restart:
Step 1:
Digits = 23;
N = 4;

1
C[O] = E;
{[0.01, 0.001,0.0001,0.00001] .
[0.10,0.20,0.30,0.40] '

v

A

{ [0.10,0.20,0.30,0.40 ]
[0.01,0.001,0.0001,0.00001]’
.X'2

(0(x,0) =
1+ —e#

IBC = Co ;
| @(xp,t) =0
k p(1,t) =0
@|[0] == IBC;

Step 2:
BPDE = value(—¢[0] * (dif f (¢[0],x) + v  (dif f (¢[0], x) * x — 1 * ¢[0]);
@[1] == value(int(BPDE,t = 0 ...t));

form from1toN do
@[m + 1] :== value ((int((—(sum(q)[n],n =0..mx)*Dif f(sum(p[n],n=0..m,x) + v *

Diff(sum(<p[n],n =0..mx)*x—Ax*(sum(p[n],n=0..m, x)), t=0.. t)) —
(int(—(sum(p[n],n =0..m—1,x) * Dif f(sum(p[n],n=0..m—1,x) + v *
Diff(sum(p[nl,n=0..m—1,x) *x — A% (sum(p[n],n=0..m—-1,x),t =0 ... t))):

3)
end do

BPDE* := sum(¢[k],k =0...N + 1);
@[sol] == evalf (BPDE™);
forifrom0byO0.1to1do

@li] = evalf(eval(@[sol,[x = i,t = i]))
end do

Step 3:

soll := BPDE™;
M|0] := eval(soll,
2] == eval(soll,

)

[t =0])

M[ [t = 2]);
M[4] := eval(soll, [t = 4]);
M|[6] = eval(soll, [t = 6])
M[8] := eval(soll, [t = 8])

)

)
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M[10] := eval(soll, [t = 10]);
end do

Step 4:

withplot:

@[3Dplot] = plot3d([soll],x =0..1,t=0..1,grid = [100,100], red, blue, green, orange);
@[2Dplot] = plot2d([M[0], M[2], M[4], M[6], M[8], M[10], ], t
= 0...3, color: red, blue, yellow, purple, black, green);

o|[densityplot] := densityplot([soll],x = —m ..., t = —T ..., axes = boxed, colourstye = HUE);
Output: See Table 1, Table 2 and Figures 1,2,3,..6

where N is the computational length and positive integer.

when source term A is greater than kinematic viscosity v and vice versa.

COMPUTATIONAL EXPERIMENT AND NUMERICAL SOLUTIONS
In this section, we performed numerical experiment on equation (1) using formulated algorithm

Table 1. Numerical solutions ¢(x, t) when source term A greater than kinematic viscosity v

(x, 1) v A p(x,t) o (x,t)
kinematic source Analytical solutions Algorithm solutions
Viscosity term A>v A>v
0.0100000 | 0.1000000 | 0.0000000000000000000000000 | 0.0000000000000000000000000
0.0010000 | 0.2000000 | 0.0000000000000000000000000 | 0.0000000000000000000000000
(0,0) |0.0001000 | 0.3000000 | 0.0000000000000000000000000 | 0.0000000000000000000000000
0.0000100 | 0.4000000 | 0.0000000000000000000000000 | 0.0000000000000000000000000
0.0100000 | 0.1000000 | 0.0019205791977851020052572 | 0.0019205791977851020052577
0.0010000 | 0.2000000 | 0.0001966143206766733915900 | 0.0001966143206766733915905
(0.1,0.1] 0.0001000 | 0.3000000 | 0.0000197310074599460118663 | 0.0000197310074599460118668
0.0000100 | 0.4000000 | 0.0000019751145994824737489 | 0.0000019751145994824737494
0.0100000 | 0.1000000 | 0.0036901457379184520880064 | 0.0036901457379184520880072
0.0010000 | 0.2000000 | 0.0003796985599558748274683 | 0.0003796985599558748274687
(0.2,0.2] 0.0001000 | 0.3000000 | 0.0000381682422562330039029 | 0.0000381682422562330039033
0.0000100 | 0.4000000 | 0.0000038239099975343728472 | 0.0000038239099975343728476
0.0100000 | 0.1000000 | 0.0052161028800279401123873 | 0.0052161028800279401123877
0.0010000 | 0.2000000 | 0.0005391015305160357026145 | 0.0005391015305160357026148
(0.3,0.3] 0.0001000 | 0.3000000 | 0.0000542792305321754810901 | 0.0000542792305321754810905
0.0000100 | 0.4000000 | 0.0000054425035757214104329 | 0.0000054425035757214104333
0.0100000 | 0.1000000 | 0.0064287530857051869665458 | 0.0064287530857051869665461
0.0010000 | 0.2000000 | 0.0006669549885984543223739 | 0.0006669549885984543223741
(0.4,0.4] 0.0001000 | 0.3000000 | 0.0000672558527529815455971 | 0.0000672558527529815455974
0.0000100 | 0.4000000 | 0.0000067491907340941260768 | 0.0000067491907340941260771
0.0100000 | 0.1000000 | 0.0072853628940961389662838 | 0.0072853628940961389662841
0.0010000 | 0.2000000 | 0.0007582890689490012233680 | 0.0007582890689490012233683
(0.5,0.5) 0.0001000 | 0.3000000 | 0.0000765798630320059602176 | 0.0000765798630320059602179
0.0000100 | 0.4000000 | 0.0000076911333115079344268 | 0.0000076911333115079344281
0.0100000 | 0.1000000 | 0.0077714897302639519306157 | 0.0077714897302639519306150
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0.0010000

0.2000000

0.0008112851281455813455854

0.0008112851281455813455857

(0.6,0.6)

0.0001000

0.3000000

0.0000820513941318524392771

0.0000820513941318524392771

0.0000100

0.4000000

0.0000082473509322703132049

0.0000082473509322703132051

0.0100000

0.1000000

0.0078998206062553444783436

0.0078998206062553444783438

0.0010000

0.2000000

0.0008271615211382859449821

0.0008271615211382859449823

(0.7,0.7)

0.0001000

0.3000000

0.0000837793263023477101203

0.0000837793263023477101205

0.0000100

0.4000000

0.0000084278782260477686622

0.0000084278782260477686624

0.0100000

0.1000000

0.0077068092853491681631066

0.0077068092853491681631068

0.0010000

0.2000000

0.0008097391573877628611918

0.0008097391573877628611920

(0.8,0.8)

0.0001000

0.3000000

0.0000821381514413541109239

0.0000821381514413541109241

0.0000100

0.4000000

0.0000082695349594363521544

0.0000082695349594363521546

0.0100000

0.1000000

0.0072474461945191029712682

0.0072474461945191029712684

0.0010000

0.2000000

0.0007647735143249820892061

0.0007647735143249820892063

(0.9,0.9)

0.0001000

0.3000000

0.0000777004453116780745552

0.0000777004453116780745554

0.0000100

0.4000000

0.0000078292145331431377745

0.0000078292145331431377747

0.0100000

0.1000000

0.0065886317181954262239220

0.0065886317181954262239221

0.0010000

0.2000000

0.0006991631080534941045439

0.0006991631080534941045440

(1.0, 1.0)

0.0001000

0.3000000

0.0000711565811689268498757

0.0000711565811689268498758

0.0000100

0.4000000

0.0000071758568944622622571

0.0000071758568944622622572

Figure 1. depict 3Dplot for velocity ¢ (x, t) profile when 2 > v

o(%58) 0.004-

0.008
0.007
0.006
0.005

0.003
0 .l)l)l':
0.001
e

0

Figure.1 Numerical solutions ¢(x,t) on 3D plots
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when source term A=0.100 is greater than kinematic viscosity v=0.01
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Figure 2. Numerical solutions ¢(x,t) on 2D plots time interval 0=t=10
When source term A=0.100 is greater than kinematic viscosity v=0.01
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Figure 3. Density plots of x space coordinate on ta given time
when source term A=0.100 is greater than kinematic viscosity v=0.01
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Table 2. Numerical solution ¢ (x, t) when kinematic viscosity v greater than source term A

(x,t) A v @(x,t) o(x,t)
source | kinematic Analytical solutions Algorithm solutions
term viscosity v> A v>A

0.0100000 | 0.1000000 | 0.0000000000000000000000000 | 0.0000000000000000000000000
0.0010000 | 0.2000000 | 0.0000000000000000000000000 | 0.0000000000000000000000000

(0,0) |0.0001000 | 0.3000000 | 0.0000000000000000000000000 | 0.0000000000000000000000000
0.0000100 | 0.4000000 | 0.0000000000000000000000000 | 0.0000000000000000000000000
0.0100000 | 0.1000000 | 0.0164070228946440802997195 | 0.0164070228946440802997200
0.0010000 | 0.2000000 | 0.0089724735529128306315165 | 0.0089724735529128306315170
(0.1,0.1) 0.0001000 | 0.3000000 | 0.0061743094936035260488750 | 0.0061743094936035260488755
0.0000100 | 0.4000000 | 0.0047065304221197243875893 | 0.0047065304221197243875898
0.0100000 | 0.1000000 | 0.0318130399592803393999268 | 0.0318130399592803393999273
0.0010000 | 0.2000000 | 0.0174067994471830258633561 | 0.0174067994471830258633566
(0.2,0.2] 0.0001000 | 0.3000000 | 0.0119797393934279710388233 | 0.0119797393934279710388238
0.0000100 | 0.4000000 | 0.0091323775724600502652494 | 0.0091323775724600502652499
0.0100000 | 0.1000000 | 0.0455969918171862566788757 | 0.0455969918171862566788761
0.0010000 | 0.2000000 | 0.0249044740354633477374921 | 0.0249044740354633477374925
(0.3,0.3] 0.0001000 | 0.3000000 | 0.0171257087714187418102725 0.0171257087714187418102721
0.0000100 | 0.4000000 | 0.0130492981302987643830156 | 0.0130492981302987643830159
0.0100000 | 0.1000000 | 0.0572583871254471249234828 | 0.0572583871254471249234832
0.0010000 | 0.2000000 | 0.0311456980601419654824941 | 0.0311456980601419654824945
(0.4,0.4) 0.0001000 | 0.3000000 | 0.0213794267961712132128149 | 0.0213794267961712132128153
0.0000100 | 0.4000000 | 0.0162746225878767737178769 | 0.0162746225878767737178773
0.0100000 | 0.1000000 | 0.0663913720433356837762526 | 0.0663913720433356837762530
0.0010000 | 0.2000000 | 0.0358921323216115535715538 | 0.0358921323216115535715541
(0.5,0.5) 0.0001000 | 0.3000000 | 0.0245732836617873946572741 | 0.0245732836617873946572745
0.0000100 | 0.4000000 | 0.0186792885565451625092288 | 0.0186792885565451625092292
0.0100000 | 0.1000000 | 0.0726631916025338301120124 | 0.0726631916025338301120128
0.0010000 | 0.2000000 | 0.0389876436360713143507860 | 0.0389876436360713143507864
(0.6,0.6] 0.0001000 | 0.3000000 | 0.0266086367219321593742440 | 0.0266086367219321593742440
0.0000100 | 0.4000000 | 0.0201920111317540674417846 | 0.0201920111317540674417850
0.0100000 | 0.1000000 | 0.0758095263774974991875114 | 0.0758095263774974991875117
0.0010000 | 0.2000000 | 0.0403619421538009191692216 | 0.0403619421538009191692219
(0.7,0.7) 0.0001000 | 0.3000000 | 0.0274583165585235986256171 | 0.0274583165585235986256175
0.0000100 | 0.4000000 | 0.0208008726892389107032321 | 0.0208008726892389107032325
0.0100000 | 0.1000000 | 0.0756584297089173086147787 | 0.0756584297089173086147790
0.0010000 | 0.2000000 | 0.0400389465538182009577467 | 0.0400389465538182009577470
(0.8,0.8) 0.0001000 | 0.3000000 | 0.0271683494655335742034167 | 0.0271683494655335742034170
0.0000100 | 0.4000000 | 0.0205525696901856076531268 | 0.0205525696901856076512660
0.0100000 | 0.1000000 | 0.0721937456008983018680140 | 0.0721937456008983018680143
0.0010000 | 0.2000000 | 0.0381477922138930031763419 | 0.0381477922138930031763422
(0.9,0.9) 0.0001000 | 0.3000000 | 0.0258573476246496956601525 | 0.0258573476246496956601527
0.0000100 | 0.4000000 | 0.0195484730553503629359243 | 0.0195484730553503629359245
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0.0100000 | 0.1000000

0.0656584479504422297843746

0.0656584479504422297843746

0.0010000 | 0.2000000

0.0349297331650434975816878

0.0349297331650434975816879

(1.0, 1.0)

0.0001000 | 0.3000000

0.0237104232604819429627684

0.0237104232604819429627685

0.0000100 | 0.4000000

0.0179360768568172507597790

0.0179360768568172507597791

0.07
0.06
0.05+

0.03+

0.02+

Figure. 4 Numerical solutions ¢(x,t) on 3D plots
when kinematic viscosity v=0.100 is greater than source term A =0.01

plx.t)
0.1

-0.14

— =0
—_—t=2
t=
— =6
— t=8
t=10

Figure 5. Numerical solutions ¢(x,t) on 2D plots time interval 0=t=10
when kinematic viscosity v=0.100 is greater than source term A=0.01
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30 9 -1 0 1 2 3
X
Figure 6 Density plots of x space coordinate on a given time
when kinematic viscosity v=0.100 is greater thanSource term A=0.01

DISCUSSION AND CONCLUSION

In this paper, we proposed and applied a computational algorithm for the numerical solutions of
Burgers’equation occur with source. We axamined and obtained velocity ¢ (x, t) when kinematics
viscosity v is less than 1 source term and vice-versa. From the numerical solutions obtained, we
observed the following:

Vil.

viii.

Decrease in kinematics viscosity v and increase in source term A yielded less velocity
@ (x,t) air flows on wave travelling space within the given domian Table 1.

Increase in kinematics viscosity v and decrease in source term A yielded less velocity
¢ (x,t) air flows on wave travelling space within the given domian Table 2.

More decrease are recorded in (i) compare to (ii).

Figure 1 depicts 3Dplot for velocity ¢(x, t) profile when A > v.

Figure 2 depicts 3Dplot for velocity ¢ (x, t) profile when v < A.

Figure 3 depicts 2Dplot for velocity ¢ (x, t) air flows on wave travelling on time
interval 0 <t < 10 for A > v.

Figure 4 depicts 2Dplot for velocity ¢ (x, t) of air flows on wave travelling on time
interval 0 <t < 10 forv < A

Figure 5 depicts desityplot for velocity ¢ (x, t) of air flows on wave travelling at x
space coordinate on a given time t for 4 > v.

Figure 5 depicts desityplot for velocity ¢(x, t) of air flows on wave travelling at x
space coordinate on a given time t forv < A.

Application of a new four steps algorithm for the numerical solution of Burger’s equation
with source term in aerodynamics theory was considered. We observed from the analytical and
numerical solutions are in close proximity and good agreement. The computational solutions
represents a prototype of real experimental situation in a well set laboratory enviroment and given
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computational ideas of what is obtainable in computational engineering. Thus, the proposed
algorithm is hereby subjected to further study of Burgers’equation in gas dynamics, traffic flow
and quantum field theory.
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APPENDICES
Appendix A:
For A>v
Step 1:
restart,
Digits == 23;
N:=4:
0] = 5
v = 0.01;
A= 0.1;
IBC = x
)
o+ (Jor) 5
¢[0] == IBG;
Step 2:

BPDE = value( - (¢[0])-Diff((9[01),x) + v-Diff((9[0]),x) -x — A-(¢[0]));

@[1] == value(Int(BPDE,t=0..t));

for m from 1 to Ndo

@[m + 1] :== value(Int( -sum(@[n],n =0 ..m)-Diff (sum(p[n],n=0.m),x) + v
-Diff (sum(@[n],n=0.m),x)-x — A- sum((p[n] n=0.m),t=0.t) — Int(
—sum(@[n],n=0.m — 1)-Diff sum(o[n],n=0..m — 1),x) + v-Diff (sum(o[n],n

=0.m—1),x)-x — A-sum(@[n],n=0.m 1) t=0.1))
end do:

BDPE" = evalf(sum(@[k],k=0.N+ 1)) :
for i from 0 by 0.1to 1do ¢[i] := evalf(evallBDPE", [x=i,t=i])); end do;
o@[1] = value(Int(BPDE,t=0..t));

Step 3:
soll == BDPE" :
M[0] = eval(soll,t=0)
M[1] = eval(soll,t=12)
M[2] == eval(soll,t=4) :
M|[3] == eval(soll,t=6) :
M[4] = eval(soll,t=8)
M([5] == eval(soll, t=10) :
Step 4
with(plots);

plot3d(soll,x =0 ..1,t=0..1, grid = [ 100, 100 |, color="red")
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plot([M[O0],M[1],M[2],M[3],M[4], M[5]],x=0..3,color = [red, blue, yellow, purple,
black, green), axes = BOXED, title = "BURGER WITH SOURCE TERMS v< ")

densityplot(soll, x =-Pi ..Pi, t =—Pi ..Pi, axes = boxed, colorstyle = HUE);
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Dy, 0.0019205791977851020052577
:=0.0036901457379184520880074
D5 0.0052161028800279401123878
:=0.0064287530857051869665464
D5 0.0072853628940961389662842
:=0.0077714897302639519306148
:=0.0078998206062553444783438
Pyg ™ 0.0077068092853491681631068
:=0.0072474461945191029712681
D0 0.0065886317181954262239221
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