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ABSTRACT 

In this paper, we formulate a four step computational algorithm to solve nonlinear Burger’s 

equation with source terms whose occur in aerodynamics engineering which play a major roles in 

convection and diffusion whose present in viscous fluid flow engineering problems. Numerical 

assessment  was carried out to study effect of source term 𝜆𝜑 which represents the heat released 

in the boundary layer. Increase the source 𝜆 term and decrease in 𝑣 kinematic viscosity which play 

a major roles in obtaing velocity 𝜑(𝑥, 𝑡). Eventually, we subject the nonlinear Burger’s equation 

with source terms to initial and boundary conditions available in the literature. The results 

revealed that the new algorithm is capable and realiable to solve similar nonlinear partial 

differential equations occur in applied physics and engineering. 

 

Keywords: A four step algorithm, Nonlinear Burger’s equation, Source terms, Aerodynamics 
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INTRODUCTION 

In this paper, we consider nonlinear Burgers’ equation with source terms in aerodynamics 

engineering of the form (Mayur et  al.,  2018): 

 
𝜕𝜑

𝜕𝑡
+ 𝜑

𝜕𝜑

𝜕𝑥
= 𝑣

𝜕𝜑

𝜕𝑥
𝑥 − 𝜆𝜑            𝑥, 𝑣, 𝜆 > 0                                                (1) 

 

with initial and boundary conditions given (Chandrasekharan Nair, & Awasthi,  2019). 
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{
 
 

 
 𝜑(𝑥, 𝑡0) =

𝑥

1 +
1
𝑐0
𝑒
𝑥2

4𝑣

                0 < 𝑥 < 1

𝜑(𝑥0, 𝑡) = 𝑡0                                1 ≤ 𝑡 ≤ 𝑇

   𝜑(1, 𝑡) = 𝑡0                                 1 ≤ 𝑡 ≤ 𝑇  

                                                       (2) 

 

Where  𝜑(𝑥, 𝑡) is the dependent variable which 𝑥 is space coordinate and 𝑡 is time, 𝜆𝜑 represents 

source terms which plays a role of releases heat in the boundary layer, 𝑣 is kinematic viscosity and  

𝑐0 is a constant.  

Burgers’ equation was proposed by Johannes Martinus Burgers (1895–1981), a Dutch 

physicist, and become one of the leading equations in the field of fluid mechanics which explained 

details in theory of fluid flow dynamics of traffic and turbulence shock waves. Its contributed a 

great significance in the diversified physical problems related to engineering and applied sciences. 

Burgers’ equation is one of the famous non-linear partial differential equations which is suitable 

for the analysis of various important areas in applied mathematics and engineering physics. 

(Burgers, 1939, Nieuwstadt & Steketee, 2012, Abdou & Soliman, 2005, Burgers, 1948,  

Panayotounakos & Drikakis, 1995). 

In recent years, several reseaachers have developed a significant computational techniques 

for solving linear and non-linear PDEs found in many physical phenomena in applied mathematics. 

Burgers’ equation is one of the most partial equations  describes non-linear propagation and 

diffusive effects which occurs and represents various physical problems arising in applied sciences 

which is difficult to solve analytically. The presence of non-linear convective term 𝜑
𝜕𝜑

𝜕𝑥
 and 𝑣

𝜕𝜑

𝜕𝑥
𝑥 

feature in Burgers’ equation (1) describe a situation when 𝑣 approaches zero, it become inviscid 

Burgers’ equation of a model of wave propagation. Moreover, as 𝜑 tends to zero, equation  (1) 

becomes the heat equation which describe unsteady heat equation without internal heat generation 

arises in the mathematical modelling of many physical phenomena occurring in nature. Ismail et  

al. (2004) applied adomian decomposition method to obtain numerical solutions of Burger’s  

equation, homotopy  perturbation  method was employed to solve coupled  Burger’s equations by 

(Desai & Pradhan, 2012), authors (Abdou & Soliman, 2005) presented and applied variational 

iteration method for solving Burger’s and coupled Burger’s  equations and (Mittal & Jain, 2021) 

proposed modified cubic B-splines over finite elements as a method for solving Burgers’ equation 

and (Chandrasekharan & Awasthi, 2019) presented and applied quintic trigonometric spline based 

numerical scheme for nonlinear modified Burgers’ equation and just to mention a few. 

The objective of this paper is to modified the algorithm presented by (Falade & Tiamiyu, 

2020) and to investigate  behavior of parameters (𝜆𝜑 represents source terms  and 𝑣 kinematic 

viscosity) on Burgers’ equation (1) which explains the role of diffusion and convection when a 

non-autonomous reaction term produces heat constantly in a viscous flow (Mohamed, 2019) , 

furthermore, we present 3D plots, 2D plots and densityplots for the heat distrubution profiles of 

Burgers’ equation. 

 

NEW FOUR STEPS ALGORITHM (NFSA) 

In this section, we present a four steps algorithm using MAPLE18 codes software package to solve 

equation (1) with initial conditions (2) as follows: 
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restart:  

Step 1:  

𝐷𝑖𝑔𝑖𝑡𝑠 ≔ 23; 
𝑁 ≔ 4; 

C[0] ≔
1

2
; 

𝑣 ≔ {
[0.01, 0.001, 0.0001,0.00001]

[0.10, 0.20, 0.30, 0.40 ]
; 

 

𝜆 ≔ {
[0.10, 0.20, 0.30, 0.40 ]

[0.01, 0.001, 0.0001,0.00001]
; 

𝐼𝐵𝐶 ≔

{
 
 

 
 𝜑(𝑥, 0) =

𝑥

1 +
1
𝑐0
𝑒
𝑥2

4𝑣

𝜑(𝑥0, 𝑡) = 0

𝜑(1, 𝑡) = 0

;  

𝜑[0] ≔ 𝐼𝐵𝐶; 
 

Step 2: 

𝐵𝑃𝐷𝐸 ≔ 𝑣𝑎𝑙𝑢𝑒(−𝜑[0] ∗ (𝑑𝑖𝑓𝑓(𝜑[0], 𝑥) + 𝑣 ∗ (𝑑𝑖𝑓𝑓(𝜑[0], 𝑥) ∗ 𝑥 − 𝜆 ∗ 𝜑[0]); 

𝜑[1] ≔ 𝑣𝑎𝑙𝑢𝑒(𝑖𝑛𝑡(𝐵𝑃𝐷𝐸, 𝑡 = 0… 𝑡)); 
 

𝑓𝑜𝑟 𝑚 𝑓𝑟𝑜𝑚 1 𝑡𝑜 𝑁 𝑑𝑜 

𝜑[𝑚 + 1] ≔ 𝑣𝑎𝑙𝑢𝑒 ((𝑖𝑛𝑡((−(𝑠𝑢𝑚(𝜑[𝑛], 𝑛 = 0…𝑚, 𝑥) ∗ 𝐷𝑖𝑓𝑓(𝑠𝑢𝑚(𝜑[𝑛], 𝑛 = 0…𝑚, 𝑥) + 𝑣 ∗

𝐷𝑖𝑓𝑓(𝑠𝑢𝑚(𝜑[𝑛], 𝑛 = 0…𝑚, 𝑥) ∗ 𝑥 − 𝜆 ∗ (𝑠𝑢𝑚(𝜑[𝑛], 𝑛 = 0…𝑚, 𝑥)), 𝑡 = 0… 𝑡)) −

(𝑖𝑛𝑡(−(𝑠𝑢𝑚(𝜑[𝑛], 𝑛 = 0…𝑚 − 1, 𝑥) ∗ 𝐷𝑖𝑓𝑓(𝑠𝑢𝑚(𝜑[𝑛], 𝑛 = 0…𝑚 − 1, 𝑥) + 𝑣 ∗

𝐷𝑖𝑓𝑓(𝑠𝑢𝑚(𝜑[𝑛], 𝑛 = 0…𝑚 − 1, 𝑥) ∗ 𝑥 − 𝜆 ∗ (𝑠𝑢𝑚(𝜑[𝑛], 𝑛 = 0…𝑚 − 1, 𝑥), 𝑡 = 0… 𝑡))):                                            

(3)                                                                                                                                                                                                       

𝑒𝑛𝑑 𝑑𝑜 

 

𝐵𝑃𝐷𝐸∗ ≔ 𝑠𝑢𝑚(𝜑[𝑘], 𝑘 = 0… .𝑁 + 1); 
φ[𝑠𝑜𝑙] ≔ 𝑒𝑣𝑎𝑙𝑓(𝐵𝑃𝐷𝐸∗); 
𝑓𝑜𝑟 𝑖 𝑓𝑟𝑜𝑚 0 𝑏𝑦 0.1 𝑡𝑜 1 𝑑𝑜 

𝜑[𝑖] ≔ 𝑒𝑣𝑎𝑙𝑓(𝑒𝑣𝑎𝑙(φ[𝑠𝑜𝑙, [𝑥 = 𝑖, 𝑡 = 𝑖])) 
𝑒𝑛𝑑 𝑑𝑜 

 

Step 3: 

𝑠𝑜𝑙1 ≔ 𝐵𝑃𝐷𝐸∗; 
𝑀[0] ≔ 𝑒𝑣𝑎𝑙(𝑠𝑜𝑙1, [𝑡 = 0]); 
𝑀[2] ≔ 𝑒𝑣𝑎𝑙(𝑠𝑜𝑙1, [𝑡 = 2]); 
𝑀[4] ≔ 𝑒𝑣𝑎𝑙(𝑠𝑜𝑙1, [𝑡 = 4]); 
𝑀[6] ≔ 𝑒𝑣𝑎𝑙(𝑠𝑜𝑙1, [𝑡 = 6]); 
𝑀[8] ≔ 𝑒𝑣𝑎𝑙(𝑠𝑜𝑙1, [𝑡 = 8]); 
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𝑀[10] ≔ 𝑒𝑣𝑎𝑙(𝑠𝑜𝑙1, [𝑡 = 10]); 
𝑒𝑛𝑑 𝑑𝑜 

Step 4: 

withplot: 
φ[3Dplot] ≔ plot3d([sol1], x = 0…1, t = 0…1, grid = [100,100], red, blue, green, orange); 
φ[2Dplot] ≔ plot2d([M[0],M[2],M[4],M[6],M[8],M[10], ], t

= 0…3, color: red, blue, yellow, purple, black, green); 
φ[densityplot] ≔ densityplot([sol1], x = −π…π, t = −π…π, axes = boxed, colourstye = HUE); 
Output: See Table 1, Table 2 and Figures 1,2,3,..6  

where N is the computational length and  positive integer. 

 

COMPUTATIONAL EXPERIMENT AND NUMERICAL SOLUTIONS 

In this section, we performed numerical experiment on equation (1) using formulated algorithm 

when source term 𝜆 is greater than kinematic viscosity 𝑣 and vice versa. 

 

Table 1. Numerical solutions 𝜑(𝑥, 𝑡) when source term 𝜆 greater than kinematic viscosity 𝑣 

 

  (𝑥, 𝑡) 𝑣  
kinematic  

viscosity 

𝜆 
source 

term 

𝜑(𝑥, 𝑡)   
Analytical solutions 

𝜆 > 𝑣 

𝜑(𝑥, 𝑡)  
 Algorithm solutions 

𝜆 > 𝑣 

 

 

(0,0) 

0.0100000 0.1000000 0.0000000000000000000000000 0.0000000000000000000000000 

0.0010000 0.2000000 0.0000000000000000000000000 0.0000000000000000000000000 

0.0001000 0.3000000 0.0000000000000000000000000 0.0000000000000000000000000 

0.0000100 0.4000000 0.0000000000000000000000000 0.0000000000000000000000000 

 

 

(0.1, 0.1) 

0.0100000 0.1000000 0.0019205791977851020052572 0.0019205791977851020052577 

0.0010000 0.2000000 0.0001966143206766733915900 0.0001966143206766733915905 

0.0001000 0.3000000 0.0000197310074599460118663 0.0000197310074599460118668 

0.0000100 0.4000000 0.0000019751145994824737489 0.0000019751145994824737494 

 

 

(0.2, 0.2) 

0.0100000 0.1000000 0.0036901457379184520880064 0.0036901457379184520880072 

0.0010000 0.2000000 0.0003796985599558748274683 0.0003796985599558748274687 

0.0001000 0.3000000 0.0000381682422562330039029 0.0000381682422562330039033 

0.0000100 0.4000000 0.0000038239099975343728472 0.0000038239099975343728476 

 

 

(0.3, 0.3) 

0.0100000 0.1000000 0.0052161028800279401123873 0.0052161028800279401123877 

0.0010000 0.2000000 0.0005391015305160357026145 0.0005391015305160357026148 

0.0001000 0.3000000 0.0000542792305321754810901 0.0000542792305321754810905 

0.0000100 0.4000000 0.0000054425035757214104329 0.0000054425035757214104333 

 

 

(0.4, 0.4) 

0.0100000 0.1000000 0.0064287530857051869665458 0.0064287530857051869665461 

0.0010000 0.2000000 0.0006669549885984543223739 0.0006669549885984543223741 

0.0001000 0.3000000 0.0000672558527529815455971 0.0000672558527529815455974 

0.0000100 0.4000000 0.0000067491907340941260768 0.0000067491907340941260771 

 

 

(0.5, 0.5) 

0.0100000 0.1000000 0.0072853628940961389662838 0.0072853628940961389662841 

0.0010000 0.2000000 0.0007582890689490012233680 0.0007582890689490012233683 

0.0001000 0.3000000 0.0000765798630320059602176 0.0000765798630320059602179 

0.0000100 0.4000000 0.0000076911333115079344268 0.0000076911333115079344281 

 0.0100000 0.1000000 0.0077714897302639519306157 0.0077714897302639519306150 
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(0.6, 0.6) 
0.0010000 0.2000000 0.0008112851281455813455854 0.0008112851281455813455857 

0.0001000 0.3000000 0.0000820513941318524392771 0.0000820513941318524392771 

0.0000100 0.4000000 0.0000082473509322703132049 0.0000082473509322703132051 

 

 

(0.7, 0.7) 

0.0100000 0.1000000 0.0078998206062553444783436 0.0078998206062553444783438 

0.0010000 0.2000000 0.0008271615211382859449821 0.0008271615211382859449823 

0.0001000 0.3000000 0.0000837793263023477101203 0.0000837793263023477101205 

0.0000100 0.4000000 0.0000084278782260477686622 0.0000084278782260477686624 

 

 

(0.8, 0.8) 

0.0100000 0.1000000 0.0077068092853491681631066 0.0077068092853491681631068 

0.0010000 0.2000000 0.0008097391573877628611918 0.0008097391573877628611920 

0.0001000 0.3000000 0.0000821381514413541109239 0.0000821381514413541109241 

0.0000100 0.4000000 0.0000082695349594363521544 0.0000082695349594363521546 

 

 

(0.9, 0.9) 

0.0100000 0.1000000 0.0072474461945191029712682 0.0072474461945191029712684 

0.0010000 0.2000000 0.0007647735143249820892061 0.0007647735143249820892063 

0.0001000 0.3000000 0.0000777004453116780745552 0.0000777004453116780745554 

0.0000100 0.4000000 0.0000078292145331431377745 0.0000078292145331431377747 

 

 

(1.0, 1.0) 

0.0100000 0.1000000 0.0065886317181954262239220 0.0065886317181954262239221 

0.0010000 0.2000000 0.0006991631080534941045439 0.0006991631080534941045440 

0.0001000 0.3000000 0.0000711565811689268498757 0.0000711565811689268498758 

0.0000100 0.4000000 0.0000071758568944622622571 0.0000071758568944622622572 

 

 

 
          Figure 1. depict 3Dplot for velocity 𝜑(𝑥, 𝑡) profile when 𝜆 > 𝑣  



 https://www.acseusa.org/journal/index.php/aijser     American International Journal of Sciences and Engineering Research    Vol. 4, No. 1; 2021 

58         

 
 

 

 

              
 

 

 



 https://www.acseusa.org/journal/index.php/aijser     American International Journal of Sciences and Engineering Research    Vol. 4, No. 1; 2021 

59         

Table 2.  Numerical solution 𝜑(𝑥, 𝑡) when kinematic viscosity 𝑣 greater than source term 𝜆  

 

  (𝑥, 𝑡) 𝜆  
source 

term 

𝑣  
kinematic  

viscosity 

𝜑(𝑥, 𝑡)   
Analytical solutions 

𝑣 > 𝜆 

𝜑(𝑥, 𝑡)  
 Algorithm solutions 

𝑣 > 𝜆 

 

 

(0,0) 

0.0100000 0.1000000 0.0000000000000000000000000 0.0000000000000000000000000 

0.0010000 0.2000000 0.0000000000000000000000000 0.0000000000000000000000000 

0.0001000 0.3000000 0.0000000000000000000000000 0.0000000000000000000000000 

0.0000100 0.4000000 0.0000000000000000000000000 0.0000000000000000000000000 

 

 

(0.1, 0.1) 

0.0100000 0.1000000 0.0164070228946440802997195 0.0164070228946440802997200 

0.0010000 0.2000000 0.0089724735529128306315165 0.0089724735529128306315170 

0.0001000 0.3000000 0.0061743094936035260488750 0.0061743094936035260488755 

0.0000100 0.4000000 0.0047065304221197243875893 0.0047065304221197243875898 

 

 

(0.2, 0.2) 

0.0100000 0.1000000 0.0318130399592803393999268 0.0318130399592803393999273 

0.0010000 0.2000000 0.0174067994471830258633561 0.0174067994471830258633566 

0.0001000 0.3000000 0.0119797393934279710388233 0.0119797393934279710388238 

0.0000100 0.4000000 0.0091323775724600502652494 0.0091323775724600502652499 

 

 

(0.3, 0.3) 

0.0100000 0.1000000 0.0455969918171862566788757 0.0455969918171862566788761 

0.0010000 0.2000000 0.0249044740354633477374921 0.0249044740354633477374925 

0.0001000 0.3000000 0.0171257087714187418102725 0.0171257087714187418102721 

0.0000100 0.4000000 0.0130492981302987643830156 0.0130492981302987643830159 

 

 

(0.4, 0.4) 

0.0100000 0.1000000 0.0572583871254471249234828 0.0572583871254471249234832 

0.0010000 0.2000000 0.0311456980601419654824941 0.0311456980601419654824945 

0.0001000 0.3000000 0.0213794267961712132128149 0.0213794267961712132128153 

0.0000100 0.4000000 0.0162746225878767737178769 0.0162746225878767737178773 

 

 

(0.5, 0.5) 

0.0100000 0.1000000 0.0663913720433356837762526 0.0663913720433356837762530 

0.0010000 0.2000000 0.0358921323216115535715538 0.0358921323216115535715541 

0.0001000 0.3000000 0.0245732836617873946572741 0.0245732836617873946572745 

0.0000100 0.4000000 0.0186792885565451625092288 0.0186792885565451625092292 

 

 

(0.6, 0.6) 

0.0100000 0.1000000 0.0726631916025338301120124 0.0726631916025338301120128 

0.0010000 0.2000000 0.0389876436360713143507860 0.0389876436360713143507864 

0.0001000 0.3000000 0.0266086367219321593742440 0.0266086367219321593742440 

0.0000100 0.4000000 0.0201920111317540674417846 0.0201920111317540674417850 

 

 

(0.7, 0.7) 

0.0100000 0.1000000 0.0758095263774974991875114 0.0758095263774974991875117 

0.0010000 0.2000000 0.0403619421538009191692216 0.0403619421538009191692219 

0.0001000 0.3000000 0.0274583165585235986256171 0.0274583165585235986256175 

0.0000100 0.4000000 0.0208008726892389107032321 0.0208008726892389107032325 

 

 

(0.8, 0.8) 

0.0100000 0.1000000 0.0756584297089173086147787 0.0756584297089173086147790 

0.0010000 0.2000000 0.0400389465538182009577467 0.0400389465538182009577470 

0.0001000 0.3000000 0.0271683494655335742034167 0.0271683494655335742034170 

0.0000100 0.4000000 0.0205525696901856076531268 0.0205525696901856076512660 

 

 

(0.9, 0.9) 

0.0100000 0.1000000 0.0721937456008983018680140 0.0721937456008983018680143 

0.0010000 0.2000000 0.0381477922138930031763419 0.0381477922138930031763422 

0.0001000 0.3000000 0.0258573476246496956601525 0.0258573476246496956601527 

0.0000100 0.4000000 0.0195484730553503629359243 0.0195484730553503629359245 
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(1.0, 1.0) 

0.0100000 0.1000000 0.0656584479504422297843746 0.0656584479504422297843746 

0.0010000 0.2000000 0.0349297331650434975816878 0.0349297331650434975816879 

0.0001000 0.3000000 0.0237104232604819429627684 0.0237104232604819429627685 

0.0000100 0.4000000 0.0179360768568172507597790 0.0179360768568172507597791 
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DISCUSSION AND CONCLUSION 

In this paper, we proposed and applied a computational algorithm for the numerical solutions of 

Burgers’equation occur with source. We axamined and obtained velocity 𝜑(𝑥, 𝑡)  when kinematics 

viscosity 𝑣 is less than 𝜆  source term and vice-versa. From the numerical solutions obtained, we 

observed the following: 

i. Decrease in kinematics viscosity 𝑣 and increase in source term 𝜆  yielded less velocity 

𝜑(𝑥, 𝑡) air flows on wave travelling space within the given domian Table 1. 

ii. Increase in kinematics viscosity 𝑣 and decrease in source term 𝜆  yielded less velocity 

𝜑(𝑥, 𝑡) air flows on wave travelling space within the given domian Table 2. 

iii. More decrease are recorded in (i) compare to (ii). 

iv. Figure 1 depicts 3Dplot for velocity 𝜑(𝑥, 𝑡) profile when  𝜆 > 𝑣. 
v. Figure 2 depicts 3Dplot for velocity 𝜑(𝑥, 𝑡) profile when 𝑣 <  𝜆. 
vi. Figure 3 depicts 2Dplot for velocity 𝜑(𝑥, 𝑡) air flows on wave travelling on time 

interval 0 ≤ 𝑡 ≤ 10 for 𝜆 > 𝑣. 
vii. Figure 4 depicts 2Dplot for velocity 𝜑(𝑥, 𝑡) of air flows on wave travelling on time 

interval 0 ≤ 𝑡 ≤ 10 for 𝑣 <  𝜆. 

viii. Figure 5 depicts desityplot for velocity 𝜑(𝑥, 𝑡) of air flows on wave travelling at 𝑥 

space coordinate on a given time t for 𝜆 > 𝑣. 
ix. Figure 5 depicts desityplot for velocity 𝜑(𝑥, 𝑡) of air flows on wave travelling at 𝑥 

space coordinate on a given time t for𝑣 <  𝜆. 

 

Application of a new four steps algorithm for the numerical solution of Burger’s equation 

with source term in aerodynamics theory was considered. We observed from the analytical and 

numerical solutions are in close proximity and good agreement. The computational solutions 

represents a prototype of real experimental situation in a well set laboratory enviroment and given 
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computational ideas of what is obtainable in computational engineering. Thus, the proposed 

algorithm is hereby subjected to further study of Burgers’equation in gas dynamics, traffic flow 

and quantum field theory. 
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APPENDICES 

 

Appendix A: 

 

For    𝜆 > 𝑣 

Step 1:  

Step 2: 

 

 
 

  

  

 

 

Step 3: 

   
  

Step 4: 
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